Krein-Space Formulation of PT -Symmetry, CPT -Inner Products, and Pseudo-Hermiticity

نویسنده

  • Ali Mostafazadeh
چکیده

Emphasizing the physical constraints on the formulation of a quantum theory based on the standard measurement axiom and the Schrödinger equation, we comment on some conceptual issues arising in the formulation of PT -symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide an accessible account of a Krein-space derivation of the CPT -inner product that was widely known to mathematicians since 1950’s. We show how this derivation is linked with the pseudo-Hermitian formulation of PT -symmetric quantum mechanics. PACS number: 03.65.-w

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact PT-Symmetry Is Equivalent to Hermiticity

We show that a quantum system possessing an exact antilinear symmetry, in particular PT -symmetry, is equivalent to a quantum system having a Hermitian Hamiltonian. We construct the unitary operator relating an arbitrary non-Hermitian Hamiltonian with exact PT -symmetry to a Hermitian Hamiltonian. We apply our general results to PT symmetry in finite-dimensions and give the explicit form of the...

متن کامل

Pseudo-Hermiticity and Generalized PT - and CPT -Symmetries

We study certain linear and antilinear symmetry generators and involution operators associated with pseudo-Hermitian Hamiltonians and show that the theory of pseudoHermitian operators provides a simple explanation for the recent results of Bender, Brody and Jones (quant-ph/0208076) on the CPT -symmetry of a class of PT -symmetric nonHermitian Hamiltonians. We present a natural extension of thes...

متن کامل

Pseudo-Hermiticity versus PT Symmetry III: Equivalence of pseudo-Hermiticity and the presence of anti-linear symmetries

We show that a (non-Hermitian) Hamiltonian H admitting a complete biorthonormal set of eigenvectors is pseudo-Hermitian if and only if it has an anti-linear symmetry, i.e., a symmetry generated by an anti-linear operator. This implies that the eigenvalues of H are real or come in complex conjugate pairs if and only if H possesses such a symmetry. In particular, the reality of the spectrum of H ...

متن کامل

CPT Symmetry Without Hermiticity

In the literature the CPT theorem has only been established for Hamiltonians that are Hermitian. Here we extend the CPT theorem to quantum field theories with non-Hermitian Hamiltonians. Our derivation is a quite minimal one as it requires only the time independent evolution of scalar products and invariance under complex Lorentz transformations. The first of these requirements does not force t...

متن کامل

QT -Symmetry and Weak Pseudo-Hermiticity

For an invertible (bounded) linear operator Q acting in a Hilbert space H, we consider the consequences of the QT -symmetry of a non-Hermitian Hamiltonian H : H → H where T is the time-reversal operator. If H is symmetric in the sense that THT = H, then QT symmetry is equivalent toQ-weak-pseudo-Hermiticity. But in general this equivalence does not hold. We show this using some specific examples...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1978